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Abstract. Using the representations of the Heisenberg-Weyl relations we develop a system- 
atic scheme for constructing finite and infinite dimensional representations of the elements 
of the quantum groups GL,(n) ,  where the deformation parameter q is a primitive root of 
unity. Explicit re~ults far the examples GL,(2), GL,(3) and GL,(4) are discussed. 

1. Introduction 

Quantum groups (Drinfeld 1985, Jimbo 1986) appear as an underlying mathematical 
structure in several contexts; namely, quantum inverse scattering methods, the rational 
conformai iieid iheory and the theory of braids (Faddeev er ai i987, Takntajan i989, 
Alvarez-Gaud et a/ 1989 and the references therein). These constructs may be viewed 
as matrix groups with the non-commutative elements obeying sets of bilinear product 
relations, as  well as deformations of the Lie algebras. The sufficient condition for the 
associativity of the algebras turns out to be the Yang-Baxter relation (Yang 1967, 
Baxter 1982), the analogue for the Jacobi identity for the quantum groups. 

Corrigan et al 1990) a quantum group is identified with the endomorphisms acting on 
spaces whose elements are non-commuting coordinates. In the matrix representations 
of the endomorphisms, the commutation relations for the space coordinates generate 
the commutation relations the matrix elements have to  satisfy. The minimal set of 
relations imposed by Manin's construction turn out to be same as the set of bilinear 
relations specified by an R-matrix satisfying the Yang-Baxter equation. Viewed alter- 
nately, the structure of the R-matrix may be understood by considering the commutation 
relations imposed by Manin's construction. 

Following Corrigan et a/  (1990) we enlist (2.4) the commutation relations for 
GL,(n). A subset of bilinear product relations for GL,(n) have the form 

T- the ..:.. ..._- :-& ---- :A---> h.. nB--:- / I n Q O , \  "--I -.Le- -..+Le-- <XJ-L-- "t - I  * n o n  
111 Ulci ",cwpu"1L CUl lDLUClCiU  U J  l l l 'all l l l  , ,700,  'luu U L l l r l  'l"Lll"'J , *uI.ua c, U, ,707) 

mAmB = q"*.Bm,mA (1.1) 

where the pairs (ma ,  m , )  refer to a subset of pairs of the elements of GL,(n) and q 
is the deformation parameter. For unimodular values of q (for us, throughout, q is a 
primitive N t h  root of unity), the relations (1.1) are of the Heisenberg-Weyl type. The 
remaining bilinear relations for GL,(n) may be reformulated (Floratos 1989, Weyers 
1990) in the Heisenberg-Weyl form (1.1) provided some invertibility conditions are 
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satisfied. Exploiting the representation of the Heisenberg-Weyl group in the discrete 
space of N-vertices of a canonical polygon on a plane, Floratos (1989) constructed a 
matrix representation of the elements of GL,(Z) and Weyers (1990) noticed the 
possibility of using this technique to obtain the representations of the elements of 
GL,(n) for an arbitrary n. 

In this article we discuss a general algorithm for constructing the finite and infinite 
dimensional representations of the elements of GL,(n); the examples of GL,(2) and 
GL,(3) considered earlier (Floratos 1989, Weyers 1990) may be treated as special cases 
of our general prescription. To this end we make use of the elements of representation 
theory of generalized Clifford algebras (Ramakrishnan 1972, Jagannathan and 
Ranganathan 1974,1975, Ramakrishnan and Jagannathan 1976, Jagannathan 1985 and 
the references therein); for these algebras, relations of the type (1 .1)  form part of the 
generating relations. The essential idea is as follows. For GL,(n) the n 2 x  n2  antisym- 
metric integer matrix P of the exponents [nA.R] (where nA.R = -ns,.,) may be related 
to its unique skew-normal form p = [ vA.J through a transformation 

R Chakrabarti and R Jagannathan 

P =  u$u (1.2) 

where U is a unimodular (Idet UI= 1 )  integer matrix (see Newman (1972) for the 
construction of U and p for a given P ) .  We may construct (Ramakrishnan and 
Jagannathan 1976) the elements mA as a ‘product transformation’ of another set (pa), 

ma=npL”,B* (1 .3)  

where [uaB] = U. A direct computation verifies that the elements m, constructed by 
the above procedure satisfy the Heisenberg-Weyl relations ( 1 . 1 )  provided the set (pa) 
exhibit the bilinear product relations 

I*Al*L3= q”A’*pRpA. (1.4) 

R 

The matrix p = [ u ~ , ~ ]  is unique (see Newman 1972) and has the structure 

The rank of the matrix p is 2s (where s = (;)) and v ~ , - , , ~ ,  divides u ~ , + , , ~ , + ~  for each 
j = 1,2 , .  . . , s - I .  This leads to a realization of in, as tensor product of operators acting 
on s subspaces. The representation of the set (ma) achieved here is, in general, not 
unique as two alternate unimodular matrices, say U and U’, would yield two distinct 
sets of ma exhibiting the same commutation relations (1.1) provided U ‘ =  VU and 
VTpV= p. We notice that if all p, are represented by non-singular matrices then the 
representation of the set ( m A )  described above, however, is unique under equivalence 
up to constant multiplication factors since the set (ma) generates a projective representa- 
tion of a finite Abelian group (Backhouse and Bradley 1972, Morris 1973 and the 
references therein). 

The plan of the article is as follows. Mainly to specify our notations, we review 
certain aspects of the quantum group GL,(n) in section 2. Sections 3 , 4  and 5 contain 
our discussions for the exampies of GLq(2), GL,(3j and Gi,(4) ,  respeciiveiy. Wc 
conclude in section 6. 

2. Manin’s construction for GL,(n) 

Manin (1988) introducedan n-dimensional vectorspaceX( E R,(n.O)) = ( X c ) ,  1 is n, 



Representations of GL,(n) 1711 

the coordinates of which satisfy the bilinear product relations 

x,x, = q - ’ x,x, for i < j. (2.1) 

A dual quantum vector space e( E R,(O, n ) )  = (&), 1 s i c n with the coordinates satisfy- 
ing the relations 

.$=O 

E%, + S5,%i = 0 f o r i < j  
(2.2) 

is also introduced. The quantum group may then be viewed as a linear transformation 
matrix M (  E GL,(n)) = ( m y ) ,  1 S i, js n of these vector spaces, 

X ’ =  M X  5‘ = M e  (2.3) 

WLlLCll y“”G1YG” L ‘ IC  UIILIIc-a y,ruuucr ,c,aL,”,,s ( A . , ]  a,,” (‘.‘I. ,r,r rcqu,rcmenr A t 

R,(n,O) and <‘E R,(O, n)  induces the the following bilinear relations (Corrigan el al 
1990) for the elements mb: 

m,m, = q-’mixm,  j <  k (2.4a) 

m.m,, = q-’mjkmix i < j  (2.46) 

mumkI = mtlmu i < k , j > l  ( 2 . 4 ~ )  

m,m, , -m, ,m,=(q - l -q )m, ,m,  i < k, j c 1. (2.4d) 

... L>^L L . L : . :  _.^__.. I .... ,-* ,  - ~ ~ >  ,..“, .T. -  ~ ~ ~ - ~ ~ .  ~~~~~. “ I _  

The quantum determinant D J M )  of the matrix M is defined recursively: 

D,(m,)  = m, ( 2 . 5 )  
“ 

D , ( M )  = ( - l ) ” - ’ 9 ” - ’ m , , D , ( M l j )  
i=, 

The quantum determinant D , ( M )  has the property that it commutes with all the matrix 
elements of M, 

(2.6) 

The bilinear product relationships (2.4) may also be understood as the relations 

mbD,( M )  = D,(  M ) m ,  

and therefore D , ( M )  is a central element. 

dictated by an R-matrix condition for the quantum group GL,(n): 

Rij,k&mM,“ M,,MC&m 
where the R-matrix is given by (Corrigan el a1 1990). 

with the step function e(  i - k) defined as 

1 i > k  
0 i s k .  

O ( i - k ) =  

The R-matrix is a linear transformation acting on a direct product vector space p2, 
In an alternate viewpoint the structure of the R-matrix (2.8) may be inferred from the 
defining relation (2.7) and the bilinear commutation relations (2.4) obtained through 
Manin’s construction. The R-matrix thus obtained satisfies the Yang-Baxter equation 

RuRi,Rz = RzR,,R,, (2.10) 
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as a sufficient condition for the associativity. The notation R, denotes an operator 
acting on a triple tensor product of vector spaces V ,  0 V,0 V, such that its action on 
V,0 V,  is described by the R-matrix and its action on V, reduces to the identity. 

Floratos (1989) and Weyers (1990) noted that the bilinear product relations ( 2 . 4 ~ - c )  
are of the Heisenberg-Weyl type. These authors proved that, by making a suitable 
choice of the variables, all the product relations for GL,(n) may be recast as the 
Heisenberg-Weyl relations, provided that the inverses of certain elements exist. We 
enlist our choice of the ‘Heisenberg-Weyl variables’ for the cases GL,(2), CL,(3) and 
GL,(4) in (3.1), (4.1) and (5.1), respectively. 

R Chakrabarti and R Jagannothan 

3. Representation for GL,(2) 

For the case of GL,(2) we choose the Heisenberg-Weyl variables 

m, , ,  m 2 , ,  mZ2 and DJM). (3.1) 

The remaining element m , ,  of the matrix M may be solved as 

m,, = ( D , ( W + q - ’ m , , m 2 , ) m ; ;  (3.2) 

provided m;: exists. For the two arbitrary elements m, and mB in the list (3.1), the 
product relation is of the form (1.11, where the exponents are listed in table 1. 

Table 1. The matrix P=[n,,,l for GL,(2). 

In the notation introduced earlier, the entries of table 1 form the P-matrix for the 
GL,(2) case. The rank of the P-matrix is 2, as may be directly seen from its structure. 
The corresponding canonical form p and the unimodular integer matrix U are given by 

and 

0 - 1 0 0  .=I; : 0 0 0  P, :I (3.4) 

1 1 0 0  

U = [ !  8 ; 6 1  (3.5) 

respectively. The structure of the p suggests the following choice of the commutation 
rules for p A ( A = l ,  ..., 4): 

/*1112=q-’P*PLI (3.6) 
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and (p , ,  pa) are central elements. Following (1.3) and (3.5) we may now express the 
Heisenherg-Weyl set of variables listed in (3.1) 

m I 2  = pLI m2, = P+, mZ2 = D,(M)=p4 .  (3.7) 

When q is a primitive Nth root of unity we make the following choice without any 
loss of generality 

p1 = h , ( K )  P2=XgNiqj 

0 k ,  0 . . .  0 
0 0 k,  ... 0 

0 0 . . . . _ _  k N - ,  
k ,  0 _ _ _  _ . .  0 

(3 .S)  

(3.9) 

K = ( k , ,  . . . , k N ) .  The parameters k, ( i  = 1 ,2 ,  . . . , N )  and ,y( 20) are arbitrary complex 
numbers. Our analysis essentially reproduces the results of Floratos (1989). The 
equivalence may be established by taking the finite Fourier transformation of the 
corresponding resuits. T ie  elements p, and p4 are central in the fieisenberg-Weyi 
group and therefore must be constants, say C, and C2 respectively. This finally leads 
to the representation 

mI2 = hN ( K )  

m 2 , = x g N ( q )  m , ,  =X-'(c,+ 9- 'c ih , v (K)2 )g , v (q ) - ' .  

We obtained the representation for m, ,  in (3.11) by using (3.2). Notice that while 
Floratos (1989) made a choice of m,, to be invertible, we considered mZ2 to exhibit 
invertibility. 

In the case of projective representations of finite Abelian groups (Weyl 1950) or 
generalized Clifford algebras, p,  and p, are taken to be invertible, satisfying 

m2,=  c , h N ( K )  
(3.11) 

(3.12) N N  p ,  =p.2 = l .  

Then, necessarily we have 

k,k, . . .  k N = l  (3.13) 

and all such representations are equivalent to one in which 

k, = k 2 = .  . .= kN = 1 x = l .  (3.14) 

In the present context of bilinear relations for the elements of the matrix representation 
of the quantum groups the condition (3.12) is absent and as a consequence arbitrary 
constants ( k , )  and ,y appear in (3.8). If we consider p,  and p2 to be invertible without 
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imposing the normalization condition (3.121, we may choose the parameters as k ,  = k,  = 
. . . = k, = k ( Z 0 ) ;  alternate representations of (p l ,  p2) are equivalent up to constant 
multiplicative factors. 

R Chakrabarti and R Jagannathan 

0 2  
-2 0 

0 0 
n 

n - - 

0 0 0 
0 -1  0 
0 0 0 
I 0 0 
0 -1  -1 
I 0 0 
I 0 0 
0 0 D 

D,(M) 
0 
0 

0 
0 
0 
0 
0 
0 

0 (4.3) 

(4.4) 
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. - 
1 0 0 0 0  1 0 0 0  
0 1 0 1 0  0 0 1 0  
0 0 1 0 0 - 1 0 0 0  
0 0 0 1 1  0 1 0 0  

u = o o o o 1  0 1 0 0  
0 0 0 0 0  1 0 0 0  

(4.5) 

The structure of the p matrix leads to the following set of complutation relations for 
pa ( A = l ,  . . . ,  9): 

PIP2 = q-'P2fA (4.6a) 

P+4= Y-'P& (4.66) 

PSP6 = q2F6PLS ( 4 . 6 ~ )  

P A W S  = I *BPA otherwise. (4.6d) 

The commutation relations (4.6) suggest that the quantum group GL,(3) may he 
viewed-apart from the central elements-as n ( n  - 1)/2 (where n = 3)  mutually com- 
muting pairs of variables exhibiting Heisenherg- Weyl relationships among themselves. 
As a generalization in the case of GL,(n), we may also point out that the structure of 
(2.4) suggests that the number of mutually commuting pairs therein equals n ( n  - 1)/2. 
The property (4.6) will allow us to construct a representation of p,, ( A  = 1, .  . . , 9 )  by 
taking a tensor product of the matrices characteristic of the representations of GL,(2). 
This feature will be repeated for the larger quantum groups. 

Using (1.3) and the structure of the U-matrix (4.5) we directly construct 

m , , = p ,  m l , = p 2  

Dq ( M ,  1) = ~ 4 ~ 5 ~ 7  

D,(W=pLy. 

D q ( M , , ) = p > ~ s  

The representations of pLa ( A  = 1, .  . . ,9 )  may he obtained by considering (3.8) in tensor 
form. Apart from constant non-zero multiplicative factors, we enlist 

p , = h N ( K " ' ) @ I , @ I , .  

p2 = g N ( q ) @  I N  @ I N '  

/4 = IN @ h , v ( K " ' ) @ I , v  

(4.8) 
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where 

R Chakrabarti and R Jagannathan 

for odd N 
Ns=I:,2 for even N 

0 for odd N 
1 for even N 

& = [  

and K"' for i = (1,2) ( i  = 3) refer to an N (N')  component set of integer parameters. 
Notice that the requirement of existence of the inverses for mI2 and mZI leads to the 
restriction k!" = k"'# 0 (for i = 1,2, . . . , N )  and ky' = k"' # 0 (for i = 1,2, .  . . , N )  
whereas the components of K13' may be chosen either all equal to some non-zero 
number or having completely arbitrary values including zero. Since in (4.8) we are 
specifying the representation only up to constant multiplicative factors we may take 
kl l '=k(2!= 1 without any loss of generality. Also, while constructing the matrix rep- 
resentation of pa ( A  = 1,. . . ,9)  we use only the positive powers of h , ( K )  and g,; 
this exploits our choice of 9 to he a primitive Nth  root of unity. This is essential 
whenever the existence of inverses of h , ( K )  is not required by construction and 
consequently K may have components with arbitrary entries including zero. The 
representations for m , , ,  m2), m32 and m3) may he directly obtained by substituting 
(4.7) in (4.2). 

5. Representation for GL,(4) 

Having explained above our method in detail for the examples of GL9(2) and GL,(3), 
here we will just quote our results for GL,(4). We choose the following set of 
Heisenherg- Weyl variables for GL,(4): 

m I 2 ,  mI3,  mI4,  m2,,  m2, ml ,  m41.D4(M44,331,D4(~~~.31),  D,,(Mu.13),Dq(M44). 

D',(bf41,32), D.(M,4,23)r Dq(M4dr D , ( M d  and D , ( W  (5.1) 

The remaining elements of M may he solved as follows: 

(5.2) 
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Table 3. The matrix P =  InA,.] for GL,(4). 

me 
I 

mI2 0 - 1 - 1  0 - 1  0 0 0 0 - 1  0 - 1 - 1  0 - 1  0 
m,, 1 0 - 1  0 0 0 0 1 0 0 0 0 0 0 - I  0 
m,, 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0  

0 0 0 0 - 1 - 1 - 1  0 - 1  0 0 - 1 - 1 - 1  0 0 
ma2 I O  0 I O  0 0 0 0 0 0 - 1 - 1  0 0 0 
m,, 0 0 0 I 0 0 - 1  1 0 0 0 0 0 - 1  0 0 
m4, 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0  
D,(M,,,,,, 0 -1  -1 0 0 -1  - I  0 -1  -1  0 -2 -2 -1  -1  0 
Dq(MU,,!) 0 0 -1 1 0 0 0 I 0 0 0 -1  - I  0 - I  0 
Dq(Mu,,J 1 0 0 0 0 0 -I I 0 0 0 -1  - I  -1  0 0 

D,,(M4,,,J 1 0 0 I 1 0 0 2 1 I 1 0 0 0 0 0 
Dq(M,4,2,) 1 0 0 I 1 0 0 2 I 1 1 0 0 0 0 0 

D,(Mu) 0 0 - 1  0 0 0 - 1  0 0 0 0 - 1 - 1 - 1 - 1  0 

D,(M,,) 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0  
D,(MtJ l l o o o o o l l o l o o o o o  
D,(M) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

(5.3) 

are respectively: 

P = ( :  
0 -1 o)@(l 0 -1 o )@(  0 2  ) @ (  0 2  )@(  O 2)@o,x, (5.4) -2 0 -2 0 -2 0 

U =  

- 1  0-1 0 0 0 0 1 0 0 0 0 0 0-1 0 
0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 0  
0 0 1 1 0 0 0-1 0 0 0-1-1  0 1 0 
0 0 0 0 1 0 0 0-1 1 - 1  1 1 0 0 0 
0 0 0 1 0 0-1 1 0 0 0 0 0-1 0 0 
0 0 0 0 0  1 1  0 2 - 1  1 0 0  1 0 0  
0 0 0 0 0 0 1-1  0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0-1 1 0  0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 - 1 1 1 0 0 0  
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
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The structure of the p matrix in (5.4) immediately indicates the following commutation 
relations for pn ( A  = I , .  . . , 16): 

R Chakrabarii and R Jagannaihan 

I L I E L Z = ~ - ~ P ~ P I  

P3P4=9-'P4PL, 
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p,o= I N  Q I N O  I N ~ l N ~ Q g , " ~ ~ " ~ ( q " ' ) ~ l N ~  

p t ~  = IN @IN@ I N  @IN@IN,@ hw(K'"' )  

p,2= I, oI,oI,oIN.orN.og":~2+~(~'+~) 

C L I I = C L ~ ~ = ~ L ~ S = C L ~ ~ = I N O I N ~ I N O I N ~ ~ I N , ~ I N .  (5 .8)  

where K'" for i = ( I ,  2,3) ( i  = (4 ,5,6))  refer to an N( N')  component set of parameters. 
Notice that the invertibility conditions mentioned following (5.2) and the discussion 
subsequent to (3.14) and (4.8) show that without loss of generality all the components 
of K"'(i  = 1 , 2 , .  . . ,6)  may be chosen to be 1. 

6. Conclusion 

We have developed a systematic procedure for obtaining a finite dimensional rep- 
resentation of the elements of GL,(n) when q is a primitive Nth  root of unity. The 
method hinges on the invertibility of certain elements of GL,(n). By making a suitable 
choice of the variables the commutation relations between elements of GLJn) may 
be reduced to those of n ( n  - 1)/2 mutually commuting pairs of Heisenberg-Weyl 
variables. Now using the representation theory of the Heisenberg-Weyl group in a 
discrete space of N-vertices of a canonical N-gon on a plane we may obtain a matrix 
representation of an element of GL,(n). 

To obtain an infinite dimensional representation we express the non-trivial p -  
matrices as 

p2,-l =exp(ik;) fi2, = exp(iP,) (6.1) 

w h e r e j = l , 2 ,  ..., s (=n(n-l)/2).Theconjugatepair(%., e.)satisfythecommutation 
relation 

A 

[X,, ~ ] = i O v , _ , , ,  for q = exp( -i@) (6.2) 

mA =exp i (u2j- , .nk,+~2j,A~) - 1  . 

and consequently we may choose, for any unimodular q, 

(6.3) 

For GL,(3), Weyers (1990) prescribes the representations essentially in the form 
(6.3) while requiring the elements uo to be obtained by solving certain congruence 
relations. In our language, precisely this was computed by the reduction of the P-matrix 
to its skew-normal form. Therefore the present technique may be viewed as a systematiz- 
ation of the method of Weyers (1990) for GL,,(3) and its generalization to GL,(n). It 
should be noted that we have presented a unified description of the finite and infinite 
dimensional representations of GL,(n) in terms of the realizations of (1.1). If we want 
to use only the infinite dimensional representations of (1.1) then the procedure is much 
simpler since in that case one can choose v ~ , - , . ~ ,  = 1 for all j ( = l ,  2 , .  . . , s) and entries 
of U are not restricted to integers (see Weyl 1950). 

[' ; = I  
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